Review of LBAM Environmental Assessment 2007

Susan Monheit, M.S. Center for Watershed Science University of California at Davis

Objectives of Review

- Accuracy of data cited (data verification).
- Interpretation of Risk.
- Identification of Data Gaps.

Treatment Scenario

- Aerial applications of Lepidopteran Pheromones
 - · High volatility, insoluble, metabolized by animals.
 - Air treatment concentration: ($\simeq 40 \, \mu g/m^3$), = 167 female (Codling) moths/m³ (@ 0.24 μ g/hr)
 - Expected half life in air? 15 days.

Potential infestation level for (Codling) moth: 126,666-380,000 females/acre. (Biocontrol, Touhey, 1990)

Data Verification

 Biological facts and toxicity data were presented accurately -

with the exception of a units error in reporting mammalian inhalation toxicity.

- The correct acute inhalation LC₅₀=5.26 mg/L
 not 5.26 g/L as stated in the EA.
- Even with the "Units" error, mammalian inhalation toxicity was still correctly characterized as low.

Data Interpretation

 Environmental Assessment accurately evaluated the potential for adverse effects from treatment action as low.

- ► Toxicity values: Straight-chain-lepidopteranpheromone (SCLP) acetates are low
- Exposure to active ingredient: *Limited* to conservative regulated levels of >20 gai/Acre, and 150 gai/acre/yr, so as not to exceed natural emission levels.

Risk = <u>Exposure</u> Toxicity

Toxicity \neq Risk

USEPA Label Review Manual (Aug. 2007) Table 1. Mammalian Toxicity Categories

Study	Category I DANGER	Category II WARNING	Category III CAUTION	Category IV NONE REQUIRED
Acute Oral LD ₅₀	Up to and including 50 mg/kg	> 50 thru 500 mg/kg	> 500 thru 5,000 mg/kg	> 5000 mg/kg
Acute Dermal LD ₅₀	Up to and including 200 mg/kg	> 200 thru 2000 mg/kg	> 2,000 thru 5000 mg/kg	> 5000 mg/kg
Acute Inhalation LD ₅₀	Up to and including 0.05 mg/liter	> 0.05 thru 0.5 mg/liter	> 0.5 thru 2 mg/liter	* > 2 mg/liter

^{*} Mammalian acute inhalation toxicity for lepidopteran pheromones >5.26 mg/L

What Do Toxicity Values Mean?

- Expected Ambient Air Concentrations of LBAM pheromone. (How much is going to be in the air?)
 - = Exposure Dose (ADD)
 - Now COMPARE that *exposure*, to a number where you understand the toxic effects-
 - = Toxicity Reference Dose (RfD)i.e. No Observable Adverse Effects Level (NOAEL)

ADD/RfD =

Data Gap Analysis: Inhalation

- Lacking: Concentration of pheromone in ambient air, and expected inhalation exposure.
- Lacking: Chronic mammalian inhalation toxicity effects lacking.
- Lacking: Sub-lethal endpoints lacking.

One rat inhalation test noted labored respiration & nasal discharge (Touhey, 1990), at the *RfD of 3.3 mg/L (pheromone for Pink Bollworm)

(*RfD was testing limit in this case)

Inhalation: Exposure Concentration Compared to Effects Concentration

```
RfD: > 3.3 mg/L (Pink bollworm pheromone) = 3,300,000 \mu g/m^3
```

CDFA expected ADD of LBAM pheromone $\simeq 40 \ \mu g/m^3$

```
Risk = ADD/RfD
= 40 \mu g/m^3 /3,300,000 \mu g/m^3
= 1.2 \times 10^{-5}
= 0.000012
```


Include Safety & Uncertainty factors*: 1,000 = 1.2 x 10⁻²

*10 rat to human, 10 sensitive pop (children), 10 for LOEC to NOEC

Data Gaps (continued)...

Acute freshwater, and marine invertebrate bioassays with *LBAM-specific pheromone* lacking.

LBAM-specific testing rational:

- Aquatic invertebrates due to sensitivity of species. LC_{50} values = 1.3 to 6.8 (average) mg/L.
- Amphibians baseline data: Adult frogs and tadpoles (chronic and developmental effects).
- Fish, not warranted. Sufficient data shows extremely low toxicity (LC₅₀ > 100 mg/L), "practically non-toxic", pheromone insoluble.

Conclusions

- Environmental Assessment was accurate & came to appropriate conclusions – anticipation of no adverse effects from planned treatment action – based on available data.
- Potential sub-lethal adverse effects from acute and chronic mammalian inhalation exposure are lacking.
- LBAM-specific pheromone tests lacking for all species, but most important for *freshwater* and marine invertebrates.